
Building a Simple Rock-Paper-Scissors Model in NetLogo

In this activity, we'll build a NetLogo model in which the turtle agents play a simplified form of
Rock-Paper-Scissors.

Background

A natural first question might be: What is it about Rock-Paper-Scissors that makes it a good
subject for a NetLogo model? In fact, it's interesting in part because even a basic implementation
includes a number of important intermediate concepts and techniques. But arguably more
interesting is the fact that there are some biological systems which behave, in certain respects, like
Rock-Paper-Scissors.

One example is a collection of Escherichia coli, normally called E. coli. There are three types of E.

coli:

● Type C has the ability to create a toxin called colicin, but it is itself resistant to the toxin.

● Type R is resistant to colicin, but it does not have the ability to make it.

● Type S gets killed when exposed to colicin.

The three types have certain advantages and disadvantages, with respect to each other:

● Type R bacteria grow more rapidly than type C bacteria, because not having a portion of
its metabolism dedicated to producing colicin allows type R to reproduce more efficiently. If
those two types of bacteria are put in a same container, then type R “wins” and displaces
type C.

● Type S bacteria grow even more rapidly than type R bacteria because type S absorbs
nutrients more efficiently (partly because none of the type S metabolism is dedicated to
resisting the colicin toxin). Hence S wins against R.

● Type C wins against type S because the colicin produced by type C kills type S.

Hence, these three types of bacteria have the cyclical dominance feature of Rock-Paper-Scissors: R
beats C, C beats S, but S beats R.

NetLogo Tutorials Nick Bennett

Model Behavior

In the case of E. coli, the parallels in behavior between the real world and the model we will
build is very close, with similar correspondence between the simulation results and the E. coli

experimental results. There are other biological systems with cyclical dominance that are not
quite as closely modeled with this approach1, but a model like this can still help us learn
something interesting about those ecosystems as well.

The basic characteristics of the model are as follows:

● The terrain will be completely populated by turtle agents – i.e. there is one turtle agent per
patch.

● Turtles will not move.

● Each turtle can only play against those turtles directly adjacent to it – i.e. those located
immediately to the North, East, West, or South of it.

● Each turtle will start out with a strategy of rock, paper, or scissors, selected randomly. It
will maintain this strategy until it is defeated, at which point it adopts the strategy of the
victor. Whenever it changes to a new strategy, it will continue with the new strategy until it
is once again defeated, and once again adopts the victor's strategy.

1Another parallel to Rock-Paper-Scissors in biological systems is found in the Common Side-blotched Lizard (Uta

stansburiana). This species has three different types of males that can be distinguished by the color of their throats.
Each color variation corresponds to a specific evolutionary strategy for mating:

● Orange throat males have the largest territories and posses a large number of females, and they are
physically the strongest among the three types.

● Yellow throat males are the weakest of all the types. However, they look similar to females, so they try to
sneak into territories of other males and breed with the females.

● Blue throat males do not guard as many females as the orange throat males do, but they guard them more
carefully.

Orange throat males win against blue throat males, simply due to their strength. Blue throat males lose against
orange throat males, but can win against yellow throat males because of strength, and because they guard females
closely, which makes it difficult for yellow throat males to sneak in. Yellow throat males cannot sneak into blue throat
males' territories due to the latter's vigilance, but they can successfully sneak into orange throat males' territories and
steal females. In fact, this system is not a simple RPS game because there are two types of females, and females
control the system as well by choosing their mate. Nevertheless, there is cyclical dominance, and a strong
resemblance to the behavior exhibited by our model.

Building a Simple Rock-Paper-Scissors Model in NetLogo 2

Task 1: Setting Up the Model

Rather than make this model specifically about the three E. coli strains, let's simply have three
generic species: rocks, papers, and scissors. In NetLogo, we do this with three breed statements
(at the top of the Procedures tab):

breed [rocks]

breed [papers]

breed [scissors]

(In this document, any new code added at each step will be italicized and in blue; code that was
created in a previous step will be in normal style and black.)

To make things very simple, let's make the turtle shapes circles, colored red, green, and blue
(respectively). Select the Tools/Turtle Shapes Editor menu option, and find the “circle” shape. We
will use this shape – but to make things easier in our code, we will create three special versions
of this shape: one colored red, one colored green, and one colored blue. We do this by selecting
the “circle” shape, and then pressing the Duplicate button.

Building a Simple Rock-Paper-Scissors Model in NetLogo 3

We should now see the Shape editing window:

Give this shape a new name (I suggest “rocks-circle” or “rock”), then click on the big gray circle.
When it is selected, click on the red tile in the color palette to the left. This will change the color
of the circle to red. Click OK, and our new shape appears in the shapes list. (Important:
Changing the color in the Color that changes pull-down will not change the color of the selected
shape; instead, it will just tell NetLogo that the parts of the shape drawn in that color in the
Shape editor will be the parts of the shape that change color with set color.)

Repeat the above process – duplicating the original circle, giving a new name to the new shape,
and changing the color – to create blue and green circle shapes for papers and scissors
(respectively). When this is done, close the Turtle Shapes Editor window.

Building a Simple Rock-Paper-Scissors Model in NetLogo 4

Now our model needs a setup procedure:

to setup

end

(Note that the above shows a blank line in the procedure; this is where we'll start writing the
statements that will instruct NetLogo how to set up the model.)

We'll begin the setup by clearing everything, and then telling NetLogo what shapes we will use
for our breeds:

to setup

 clear-all

 set-default-shape rocks "rocks-circle"

 set-default-shape papers "papers-circle"

 set-default-shape scissors "scissors-circle"

end

Note that the shape names must be in quotes, and must be written exactly as we wrote them
when creating our custom shapes.

Next, we create our agents. In our previous work with NetLogo, we saw that the observer can
create turtle agents with the create-turtles (or create-<breeds>) statement, and turtle
agents can create other turtle agents with the hatch statement. In this case, we will use a third
method: since we want exactly one turtle (whether of the rock, paper, or scissors breed) in each
patch, we will simply tell each patch agent to “sprout” exactly one turtle on that patch:

to setup

 clear-all

 set-default-shape rocks "rocks-circle"

 set-default-shape papers "papers-circle"

 set-default-shape scissors "scissors-circle"

 ask patches [

 sprout 1 [

]

]

end

Building a Simple Rock-Paper-Scissors Model in NetLogo 5

In the innermost set of brackets, we will write the code that each of the new turtles will execute as
part of the setup procedure. Obviously, the most important thing that each turtle needs to do is
select its strategy – which, in our model, is also its breed. We will do this randomly, using the
one-of reporter. This reporter selects one of the items in a list at random. To use it in our model,
we will create a list of the three breeds, and select from that list:

to setup

 clear-all

 set-default-shape rocks "rocks-circle"

 set-default-shape papers "papers-circle"

 set-default-shape scissors "scissors-circle"

 ask patches [

 sprout 1 [

 set breed one-of (list rocks papers scissors)

]

]

end

In this case, the parentheses around “list rock papers scissors” are essential; if they
are omitted, NetLogo will report an error.

At this point, it's a good idea to check and save our code. (Remember to end the filename with
“.nlogo”.)

Now, let's create a button that will run the setup procedure. But first, let's make a change that will
make the model display update a bit more smoothly. Switch to the Interface tab, and look for the
view updates checkbox (it will be close to the top of the window, just to the right of the speed
slider). Make sure that the checkbox is checked, then pull down the menu below it, and select on
ticks:

Building a Simple Rock-Paper-Scissors Model in NetLogo 6

Now, for our setup button: right-click on the whitespace to the left of the NetLogo “world”, and
fill in the Button dialog options:

(Note that the Display name and Action key values are not essential, and may be changed or
omitted; the Commands are what is important here.) After specifying “setup” in the Commands,
click OK.

Save your model again.

Building a Simple Rock-Paper-Scissors Model in NetLogo 7

Now, let's see what it does so far: click your Setup button, and see what happens. You should
see something like this:

Once you have fixed any problems that occurred, be sure to save again.

Building a Simple Rock-Paper-Scissors Model in NetLogo 8

Task 2: Teaching the Agents to Play Rock-Paper-Scissors

In each turn, each turtle agent will select one of its neighbors at random, and compare that
neighbor's breed to its own breed. If the breeds are the same, the agent's turn ends in a tie. If the
breeds are different, then the winner is determined by the normal rules of Rock-Paper-Scissors;
however, the breed of the loser will then change to that of the winner.

Let's write a procedure called “play”, which will eventually implement the logic described above:

to play

end

First, we select the opponent at random. You might remember that there is a NetLogo command,
neighbors, which gives us the set of the neighboring patches (i.e. those adjacent to the current
patch). In this case, we will use a variation of that, neighbors4, which returns only those
neighboring patches to the sides or up or down, but not those located diagonally. We will then
use another command, turtles-on, to get the set of turtle agents that are standing on those
patches. Finally, we will use one-of (which we have used before) to select one of those turtles at
random.

to play

 let opponent one-of turtles-on neighbors4

end

Now that we know who our opponent is, we can compare breeds. We will do this comparison a
few different times, for the different possibilities; to start, let's look for ties (if there is one, the turn
is over):

to play

 let opponent one-of turtles-on neighbors4

 let my-breed breed

 let opponent-breed [breed] of opponent

 if (my-breed = opponent-breed) [

 stop

]

end

Now, let's identify the conditions under which the current agent wins the contest:

● The current agent's breed is rocks, and the opponent's is scissors.

● The current agent's breed is papers, and the opponent's is rocks.

● The current agent's breed is scissors, and the opponent's is papers.

Building a Simple Rock-Paper-Scissors Model in NetLogo 9

Since we have already ruled out ties, we only need to check for the above combinations; if we
don't find a match, that means the current agent loses the contest.

Pay close attention to the next bit of code; the parentheses and brackets are very important.

to play

 let opponent one-of turtles-on neighbors4

 let my-breed breed

 let opponent-breed [breed] of opponent

 if (my-breed = opponent-breed) [

 stop

]

 ifelse (my-breed = rocks and opponent-breed = scissors)

 or (my-breed = papers and opponent-breed = rocks)

 or (my-breed = scissors and opponent-breed = papers) [

 ask opponent [

 set breed my-breed

]

] [

 set breed opponent-breed

]

end

Check (and fix, as necessary) and save your code.

Task 3: Telling the Agents to Play

The last procedure we need to write (for this basic version of the model) is one in which the
observer tells all of the turtle agents to play. As we often do, we will call this procedure “go”:

to go

 ask turtles [

 play

]

 tick

end

Check and save the model.

Building a Simple Rock-Paper-Scissors Model in NetLogo 10

Now, the contents of our Procedures tab should look something like this:

breed [rocks]

breed [papers]

breed [scissors]

to setup

 clear-all

 set-default-shape rocks "rocks-circle"

 set-default-shape papers "papers-circle"

 set-default-shape scissors "scissors-circle"

 ask patches [

 sprout 1 [

 set breed one-of (list rocks papers scissors)

]

]

end

to play

 let opponent one-of turtles-on neighbors4

 let my-breed breed

 let opponent-breed [breed] of opponent

 if (my-breed = opponent-breed) [

 stop

]

 ifelse (my-breed = rocks and opponent-breed = scissors)

 or (my-breed = papers and opponent-breed = rocks)

 or (my-breed = scissors and opponent-breed = papers) [

 ask opponent [

 set breed my-breed

]

] [

 set breed opponent-breed

]

end

to go

 ask turtles [

 play

]

 tick

end

Building a Simple Rock-Paper-Scissors Model in NetLogo 11

Finally, let's make a Go button. Switch back to the Interface tab, and create a new button to call
the go procedure. This time, make sure to check the Forever option:

Click OK. Save your model, and then click your new Go button to see what happens!

Task 4: Experiments

After getting a feel for how the model runs, use the Settings... button in the Interface tab to try
the following changes. After each change, run a few trials, and see if the results are significantly
different from what you observed before.

1. Change the topology from a torus to a rectangle, by unchecking the World wraps
horizontally and World wraps vertically options.

2. Return the world to a torus, but make it much smaller, by changing the max-pxcor and
max-pycor values to 10 or 12.

3. Make the world much larger, by changing max-pxcor and max-pycor to 50 (you will
probably want to change the Patch size to 5, in order to see the entire NetLogo world on
the screen).

Building a Simple Rock-Paper-Scissors Model in NetLogo 12

Discussion

1. If we view our model as an ecosystem, which of the following types of interactions are
present?

○ Predation

○ Parasitism

○ Symbiosis

○ Competition

○ Cannibalism

2. Did you try any of the variations described on the previous page? If so, what differences
(if any) in the model behavior did you notice?

Task 5: Plotting the Populations

While we can get a general sense of the relative proportions of the three breeds in our model,
it's difficult to get a more precise picture just by watching the model. Something we could do to
improve the situation is plot the three different populations over time.

Switch back to the Interface tab and create a new plot. (You create a plot the same way you
create a button, except that you select Plot from the menu of user interface devices.)

In the Plot properties, make the following changes:

1. Change the Name value to “Populations”.

2. Use the Rename button to change the name of the default pen to “rocks”.

3. Use the Color pull-down menu to select the color red for the “rocks” pen.

4. With the Create button and Color pull-down menu, create a “papers” pen, using the color
green.

5. Repeat step #4, creating a blue “scissors” pen.

Building a Simple Rock-Paper-Scissors Model in NetLogo 13

The Plot properties window should now look like this:

Click OK and save your model.

Now we need to write the code that will do the plotting. The basic operations used in plotting
most graphs are these:

1. Use set-current-plot to specify the name of the plot in which subsequent plotting
operations will be performed. (When there is only one plot, this command is not strictly
necessary; however, it's a good idea to get in the habit of using it.)

2. Use set-current-plot-pen to select one of the previously created pens for plotting.

3. Use plot (or plotxy) to plot a data point; this point will usually be connected by a line
from the previous point plotted with the pen selected in step #2.

4. Repeat steps #3 and #4 as necessary, to plot the current data values for all pens.

We'll follow the same steps in our model. In our case, the data we want to plot is simply the
population of each breed; we can get this by using the count agentset reporter. This
reporter returns the number of agents in the specified agentset (which can be a breed).

Building a Simple Rock-Paper-Scissors Model in NetLogo 14

Switch to the Procedures tab and put the plotting code in a new update-plot procedure (note
that the names of the plot and the plot pens are all given in double quotes; these are required):

to update-plot

 set-current-plot "Populations"

 set-current-plot-pen "rocks"

 plot count rocks

 set-current-plot-pen "papers"

 plot count papers

 set-current-plot-pen "scissors"

 plot count scissors

end

Of course, writing a procedure for plotting isn't enough: we also need to call that procedure, so
that our plot is automatically updated as the model runs. A logical place to do this is in the go
procedure, just after all of the agents have completed a round of play, and just before tick is
used to update the simulation time counter:

to go

 ask turtles [

 play

]

 update-plot

 tick

end

Check your code and save your model.

Test your model. If some of your experiments in task #4 ended with one breed taking over, try
those experiment again, as well.

Discussion

1. What do you notice about the variability of the breed populations over time? Does the
amount of variability stay constant? Does it change significantly?

2. What seems to happen to the variability of the breed populations shortly before one
breed takes over completely?

3. There doesn't seem to be much point in allowing the simulation model to continue running
when only one breed remains. How might we stop the model run when this happens?

4. After a model runs for several hundred ticks, the plot becomes little more than a jumble of
color, almost impossible to read. Is there a command in the NetLogo dictionary which
would let us reset the plot (possibly from a button) without restarting the simulation?

Building a Simple Rock-Paper-Scissors Model in NetLogo 15

Optional Task: Shaking the Flask

In one set of E. coli experiments, one of the experiments described included putting the E. Coli in
a flask, and shaking it periodically, so that the individual bacteria didn't always remain in the
same neighborhoods. In our model, however, each turtle agent remains stationary, and only
competes with its immediate neighbors. Can you think of any changes we might make in our
model, to match the shaken flask E. coli experiment?

Come up with a scheme which allows for a user-specifiable amount of rearranging of agents.
Any rearrangement moves (whatever those consist of) should be performed before each tick.
Also, in working out your approach, try to find one which gives a fine level of control over the
amount of randomness, and a wide range of values.

Building a Simple Rock-Paper-Scissors Model in NetLogo 16

